Quadrupole transition strengths in light Sn nuclei studied in Coulomb excitation

C. Fahlander , J. Cederkäll[†], , A. Ekström , M. Hjorth-Jensen , F. Ames[‡], P. A. Butler[§], T. Davinson[¶], J. Eberth , G. Georgiev[†], A. Gorgen^{††}, M. Górska^{‡‡}, D. Habs[§], M. Huyse^{¶¶}, O. Ivanov^{¶¶}, J. Iwanicki , O. Kester^{‡‡}, U. Köster[†], B. A. Marsh^{†††},^{‡‡‡}, P. Reiter , H. Scheit[§], D. Schwalm[§], S. Siem^{¶¶¶}, I. Stefanescu^{¶¶}, G. M. Tveten^{¶¶¶}, J. Van de Walle^{¶¶}, P. Van Duppen^{¶¶}, D. Voulot^{‡‡‡}, N. Warr , D. Weisshaar , F. Wenander^{‡‡‡} and M. Zielinska

Department of Physics, University of Lund, Box 118, SE-221 00 Lund, Sweden † PH Department, CERN 1211, Geneva 23, Switzerland

Physics Department and Center of Mathematics for Applications, University of Oslo, Norway

- *‡ TRIUMF, Vancouver, Canada*
- § Oliver Lodge Laboratory, University of Liverpool, United Kingdom
- ¶ Department of Physics and Astronomy, University of Edingburg, United Kingdom Institute of Nuclear Physics, University of Cologne, Germany
- *†† CEA Saclay, DAPNIA/SPhN, gif-sur-Yvette, France*
- tt Gesellschaft für Schwerionenforschung, Darmstadt, Germany
- §§ Physics Department, Ludwig-Maximilian University, Munich, Germany
- ¶ Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Belgium

Heavy Ion Laboratory, Warsaw University, Poland

- ††† Department of Physics, University of Manchester, United Kingdom
- **‡‡‡** AB Department, CERN 1211, Geneva 23, Switzerland
- §§§ Max-Planck Institute of Nuclear Physics, Heidelberg, Germany
- **Mathematical Content of Physics, University of Oslo, Norway**

ABSTRACT

The experimental knowledge about the shell structure evolution towards the doubly-magic self-conjugate ¹⁰⁰Sn nucleus is now becoming available through radioactive ion beam (RIB) techniques. The investigation of exotic isotopes reveals novel effects of the underlying effective nucleon-nucleon interaction. Furthermore, the Sn isotopes span a region between the N = Z = 50 and N = 82, Z = 50 double shell closures, which make them the longest isotopic chain available for experiment. This enables a unique study of the shell structure variations as a function of the number of neutrons outside the closed Sn core. The constancy of the energy separation between the first excited 2^+ state and the 0^+ ground state in the even-mass Sn isotopes is well explained within the generalized seniority model. Furthermore, according to this theory, non-diagonal matrix elements of the even one-body E2 tensor operator will exhibit a parabolic behaviour as a function of mass number across the Sn isotope chain. Large scale shell-model calculations based using a microscopic description of the effective nucleon-nucleon interaction largely agree with the generalized seniority model. The adopted experimental *B*(*E*2) values on the neutron-rich side of the Sn chain follow the theoretical predictions. The experimental RIB results on ^{106,108,110}Sn presented here display a clear discrepancy with theoretical models.