
Three-body continuum 
states

Pierre Descouvemont
Université Libre de Bruxelles

Brussels, Belgium

in collaboration with D. Baye, E. Tursunov

1. Introduction

2. The 3-body model

3. Continuum states

4. Application to α+n+n, and α+α+α

5. Conclusion



Introduction

Many applications of 3-body models:
Halo nuclei: 6He=α+n+n, 14Be=12Be+n+n, etc.
Unbound nuclei: 5H=3H+n+n, 10He=8He+n+n, etc.
Cluster states: 12C=α+α+α
Reactions: 7Be(p,γ)8B, with 7Be=α+3He
Hypernuclei

• Exotic nuclei: low separation energies (or <0) continuum states are fundamental
breakup processes need 3-body continuum wave functions

• Astrophysics: some 3-body processes are important
α+α+n
α+α+α
others?



The three-body equation

y1
x1

Jacobi coordinates x1, y1

3 sets (xi, yi), i=1,2,3

Hyperspherical coordinates:

6 coordinates

Hamiltonian:



Kinetic energy

With K2(Ω) = angular operator (equivalent to L2 in two-body systems)

• Eigenfunctions:

=hyperspherical harmonics

• Eigenvalues : K(K+4)

With lx, ly = angular momenta associated with x, y

K = hypermoment

ΦK(α) = Jacobi polynomial

Spin:                                                           with S = total spin



Schrödinger equation

ΨJMπ is expanded over the hyperspherical harmonics

To be determined Known functions

→ Set of equations for

• Potential determined numerically 

•This system is truncated at K = Kmax

• Common to bound and continuum states



Size of the system:

Example: 6He = α+n+n : S=0 or 1

378120914924

26585663620

17256452516

9933281612

46161598

S = 0,1S = 0S = 0,1S = 0Kmax

J = 2+J = 0+

To be multiplied by the number of basis functions (~ 20 - 30)
→ large systems for high J values



Removal of 2-body forbidden states:  2 possibilities
• Projection: Replace Vij by Vij+ΛPij with

• Pij=two-body projector (non local)
• Λ=large energy (typically ~106 to 108 MeV)
⇒ 2-body forbidden states are pushed at high energy

V
V

Supersymmetric transformation

D. Baye, PRL58 (1987) 2738

ρ ρ

α+n: 1 f.s. for l=0
α+α: 2 f.s. for l=0, 1 f.s. for l=2

• Supersymmetry: replace the potential by its supersymmetric partner



3-body continuum states
P. D., E. Tursunov, D. Baye, Nucl. Phys. A 765 (2006) 370

• Finite bases use of the R-matrix method

• Long range of the potential

large bases
propagation techniques are necessary

• Three-body coulomb phase shifts

• Eigenphases



Exact (asymptotic) solution:

With Ai = amplitude
Ii, Oi = ingoing and outgoing functions (depend on Bessel 

functions YK+2, JK+2)
Κ = wave number = (2mNE/ 2)1/2

Uij = collision matrix : provides the information about the collision
should not depend on a

Principle of the R matrix

The space is divided in two regions:

r < a: (Legendre functions) 

r ≥ a: Χi,ext(ρ) given by                                        (V negligible)



External region

Vij analytical

Solutions analytical (Bessel, 
Coulomb)

Internal region

Any Vij

Peculiarities of 3-body problems

2-body

ρa0

a ~ 20 - 30 fm
a’ ~ 1000 fm → propagation techniques are necessary

Intermediate region

Vij analytical (here ~ 1/ρ2

+1/ρ3+…)

Solutions NOT analytical

3-body

External region

Vij analytical (here ~ 1/ρ2 )

Solutions analytical

Internal region

Any Vij ρa a’0



Two propagation methods

1. General properties

• The R matrix is determined at radius a from the basis functions
(typically a ~25 fm , N ~ 25)

• The R-matrix is a link between the wave function and its derivative at ρ=a

2. Propagation of the wave function

•The Schrödinger equation is integrated from ρ=a to ρ=a’ with the Numerov
algorithm

with Vij(ρ) known analytically:

•should converge with N0 (typically N0 ~ 5-10)

•coefficients αij are determined from the potential

•Not possible with projection on pfs (non local potential)



3. Propagation of the R matrix
Burke et al., Comp. Phys. Com. 27 (1982) 299
Common to supersymmetry and projection techniques
Idea: to split the interval [a,a'] in N pieces

a a'

a1 a2 a3

In sub-interval i, define basis functions
Here: Lagrange functions 
Determine the R matrix Ri from Ri-1

Typical values: a~40 fm, a'~1000 fm
N~30 with 20-30 basis functions

Main difficulty: matrix elements of the projector on forbidden states



Example: 6He=α+n+n
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Comparison: projection to pfs supersymmetry

Done on 6He, J=0+, Kmax=16
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Eigenphases

For large K values the number of channels is quite large: ~100-200
eigenphases of the collision matrix
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Coulomb phase shifts

For 2-body: δ=δN+δC

For 3-body: more complicated since the coulomb phase shifts are not 
diagonal

where UC is obtained from the Coulomb potential only
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3α continuum states
Many works on 12C: recently above the 3α threshold

"Hoyle state": astrophysics

Important issues:

• 0+
2 = Bose-Einstein condensate?

• 2+ partner of 0+
2 (exists? where?)

• Fynbo et al.: no 2+
2 but a 0+

3

Broad resonances importance of a 3-body continuum model
α+α scattering well described by different potentials

deep potentials (Buck potential)
shallow potentials (Ali-Bodmer potentials)
we may expect a good description of the 3α system



α+α phase shifts
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3α spectroscopy
Bound states: simple diagonalization
Resonances: box method (Maier et al. JPB 13 (1980) L119)
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ABD0 AB Buck+sup Buck+sup 
x 1.088 

Buck+ projexp
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no satisfactory potential!!



Projection technique: E vs Λ

H. Matsumura et al., Nucl. Phys. A776 (2006) 1

No ground state if Λ too large



Further problem: definition of the forbidden states

Projector:

Two possible definitions:

1. ψf(x) is the exact solution associated with the potential

2. ψf(x) is consistent with the cluster theory h.o. orbitals
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Conclusion
• 3-body continuum much more complicated than 2-body continuum 

(hyperspherical coordinates)
→ propagation method is necessary to achieve a good convergence

• Recent developments: 2 propagation methods (necessary to use the
projection technique)

• Use of the Lagrange-mesh technique for bound and  scattering states:
• fast (no integral for the matrix elements)
• accurate (stability with the channel radius a)
• Coulomb easily included

• 6He: relatively simple, good test case

• 12C: ► more complicated (no suitable α+α potential) in progress
► Matsumura et al: BFW potential should be adapted (range)
► 3-body forces?
► Non-local potentials (based on RGM kernel)?
► Microscopic approach? (for the moment: spectroscopy only)


