Three-body continuum states

Pierre Descouvemont Université Libre de Bruxelles Brussels, Belgium

in collaboration with D. Baye, E. Tursunov

- 1. Introduction
- 2. The 3-body model
- 3. Continuum states
- 4. Application to α +n+n, and α + α + α
- 5. Conclusion

Introduction

Many applications of 3-body models:

- Halo nuclei: ⁶He= α +n+n, ¹⁴Be=¹²Be+n+n, etc.
- Unbound nuclei: ⁵H=³H+n+n, ¹⁰He=⁸He+n+n, etc.
- Cluster states: ${}^{12}C=\alpha+\alpha+\alpha$
- Reactions: ${}^{7}Be(p,\gamma){}^{8}B$, with ${}^{7}Be=\alpha+{}^{3}He$
- Hypernuclei

 Exotic nuclei: low separation energies (or <0) → continuum states are fundamental breakup processes need 3-body continuum wave functions

• Astrophysics: some 3-body processes are important

 $\alpha + \alpha + n$ $\alpha + \alpha + \alpha$ others?

The three-body equation

Hyperspherical coordinates:

$$\rho^{2} = x_{1}^{2} + y_{1}^{2} = x_{2}^{2} + y_{2}^{2} = x_{3}^{2} + y_{3}^{2}$$

$$\alpha_{i} = \arctan \frac{y_{i}}{x_{i}}$$

$$\Omega_{x_{i}}, \ \Omega_{y_{i}}$$

6 coordinates

Hamiltonian:

 $H = \sum_{i=1}^{3} T_i + \sum_{i < j} V_{ij}$ to be expressed in $(\rho, \Omega_{x_i}, \Omega_{y_i}, \alpha_i)$

Kinetic energy

$$T = T_1 + T_2 + T_3 = -\frac{\hbar^2}{2m_N} \left(\frac{\partial^2}{\partial \rho^2} + \frac{5}{\rho} \frac{\partial}{\partial \rho} - \frac{K^2(\Omega_{5i})}{\rho^2} \right),$$

With $K^2(\Omega)$ = angular operator (equivalent to L^2 in two-body systems)

• Eigenfunctions:
$$\mathcal{Y}_{KLM_L}^{\ell_x\ell_y}(\Omega_5) = \phi_K^{\ell_x\ell_y}(\alpha) \left[Y_{\ell_x}(\Omega_x) \otimes Y_{\ell_y}(\Omega_y) \right]^{LM_L}$$

=hyperspherical harmonics

- Eigenvalues : *K*(*K*+4)
 - With I_x , I_y = angular momenta associated with *x*, *y K* = hypermoment

 $\Phi_{\mathsf{K}}(\alpha)$ = Jacobi polynomial

Spin:
$$\mathcal{Y}_{\ell_x\ell_yLSK}^{JM}(\Omega) = \left[\mathcal{Y}_{KL}^{\ell_x\ell_y}(\Omega)\otimes\chi^S\right]^{JM}$$
, with S = total spin

Schrödinger equation
$$H\Psi^{JM\pi} = E\Psi^{JM\pi}$$

 $\Psi^{JM\pi}$ is expanded over the hyperspherical harmonics

$$\Psi^{JM\pi}(\rho,\Omega_{5}) = \rho^{-5/2} \sum_{\ell_{x}\ell_{y}LSK} \chi^{J\pi}_{\ell_{x}\ell_{y}LSK}(\rho) \times \mathcal{Y}^{JM}_{\ell_{x}\ell_{y}LSK}(\Omega_{5})$$

$$\xrightarrow{} \text{To be determined} \qquad \text{Known functions}$$

$$\rightarrow \text{Set of equations for } \chi^{J\pi}_{\ell_{x}\ell_{y}LSK}(\rho)$$

$$\left[-\frac{\hbar^{2}}{2m_{N}} \left(\frac{d^{2}}{d\rho^{2}} - \frac{(K+3/2)(K+5/2)}{\rho^{2}}\right) - E\right] \chi^{J\pi}_{\gamma K}(\rho) + \sum_{K'\gamma'} V^{J\pi}_{K'\gamma',K\gamma}(\rho) \chi^{J\pi}_{\gamma'K'}(\rho) = 0$$

$$\gamma = (\ell_{x}\ell_{y}LS)$$

- Potential determined numerically
- •This system is truncated at $K = K_{max}$
- Common to bound and continuum states

Size of the system:

Example: ⁶He = α +n+n : S=0 or 1

	$J = O^+$		$J = 2^+$	
K _{max}	S = 0	S = 0,1	S = 0	S = 0,1
8	9	15	16	46
12	16	28	33	99
16	25	45	56	172
20	36	66	85	265
24	49	91	120	378

To be multiplied by the number of basis functions (~ 20 - 30)

 \rightarrow large systems for high *J* values

Removal of 2-body forbidden states: 2 possibilities

- Projection: Replace V_{ij} by V_{ij} + ΛP_{ij} with
 - P_{ij}=two-body projector (non local)
 - Λ =large energy (typically ~10⁶ to 10⁸ MeV)
 - \Rightarrow 2-body forbidden states are pushed at high energy
- Supersymmetry: replace the potential by its supersymmetric partner

3-body continuum states

P. D., E. Tursunov, D. Baye, Nucl. Phys. A 765 (2006) 370

- Finite bases \rightarrow use of the R-matrix method
- Long range of the potential

→ large bases

 \rightarrow propagation techniques are necessary

- Three-body coulomb phase shifts
- Eigenphases

Principle of the *R* matrix

The space is divided in two regions:

 $r < a: \ \chi_{i, \text{int}}^{J\pi}(\rho) = \sum_{j=1}^{N} C_{ij} f_j(\rho/a) \quad \text{(Legendre functions)}$ $r \ge a: X_{i, \text{ext}}(\rho) \text{ given by } (T - E) \chi_{i, \text{ext}}^{J\pi}(\rho) = 0 \quad \text{(V negligible)}$ $\left[\frac{\partial^2}{\partial \rho^2} + \frac{5}{\rho} \frac{\partial}{\partial \rho} - \frac{K(K+4)}{\rho^2} + \kappa^2 \right] \chi_{i, \text{ext}}(\rho) = 0$

Exact (asymptotic) solution: $\chi_{i \text{ ext}}^{J\pi}(\rho) = A_i(\kappa\rho)^{1/2}(I_i(\kappa\rho) - U_{ij}O_j(\kappa\rho))$

With A_i = amplitude I_i , O_i = ingoing and outgoing functions (depend on Bessel functions Y_{K+2} , J_{K+2}) K = wave number = $(2m_N E/\hbar^2)^{1/2}$ U_{ij} = collision matrix : provides the information about the collision should not depend on a

Peculiarities of 3-body problems

2-body

3-body

	Internal region	Intermediate region	External region	
0	Any V _{ij}	a V _{ij} analytical (here ~ $1/\rho^2$ + $1/\rho^3$ +)	V _{ij} analytical (here ~ 1/ρ²) Solutions analytical	ρ
ar	~ 20 - 30 fm	Solutions NOT analytical		

a' ~ 1000 fm \rightarrow propagation techniques are necessary

Two propagation methods

- 1. General properties
- The *R* matrix is determined at radius *a* from the basis functions • (typically $a \sim 25$ fm , $N \sim 25$)
- The *R*-matrix is a link between the wave function and its derivative at ρ =a •

$$\chi_i^{J\pi}(a) = \sum_j R_{ij} \left(\frac{d\chi_j^{J\pi}}{d\rho}\right)_{\rho=a}$$

2. Propagation of the wave function

•The Schrödinger equation is integrated from $\rho = a$ to $\rho = a'$ with the Numerov algorithm

$$(T - E)\chi_i^{J\pi}(\rho) + \sum_j V_{ij}(\rho)\chi_j^{J\pi}(\rho) = 0$$

with $V_{ij}(\rho)$ known analytically: $V_{ij}(\rho) \approx \sum_{k=1}^{j} \frac{\alpha_{ij}^k}{\rho^{3+2k}}$

- •should converge with N_o (typically $N_o \sim 5-10$)
- -coefficients α_{ii} are determined from the potential
- •Not possible with projection on pfs (non local potential)

3. Propagation of the R matrix

- Burke et al., Comp. Phys. Com. 27 (1982) 299
- Common to supersymmetry and projection techniques
- Idea: to split the interval [a,a'] in N pieces

- In sub-interval i, define basis functions
- Here: Lagrange functions
- Determine the R matrix R_i from R_{i-1}
- Typical values: a~40 fm, a'~1000 fm

N~30 with 20-30 basis functions

Main difficulty: matrix elements of the projector on forbidden states

Comparison: projection to pfs $\leftarrow \rightarrow$ supersymmetry Done on ⁶He, J=0⁺, K_{max}=16

 \rightarrow very close to each other for ⁶He

Eigenphases

For large K values the number of channels is quite large: ~100-200 \rightarrow eigenphases of the collision matrix

A simple example: α +n+n, J=2⁺ , Kmax=2 \rightarrow 4 channels

before diagonalisation

after diagonalisation

Coulomb phase shifts

For 2-body: $\delta = \delta_N + \delta_C$

For 3-body: more complicated since the coulomb phase shifts are not diagonal

$$\bullet U = U_C^{1/2} U_N U_C^{1/2}$$

where $U_{\rm C}$ is obtained from the Coulomb potential only

⁶He and ⁶Be phase shifts (eigenphases): similar to I. Thompson et

3α continuum states

• Many works on ¹²C: recently above the 3α threshold

- Broad resonances \rightarrow importance of a 3-body continuum model
- $\alpha + \alpha$ scattering well described by different potentials
 - deep potentials (Buck potential)
 - shallow potentials (Ali-Bodmer potentials)
 - \rightarrow we may expect a good description of the 3α system

• $\alpha + \alpha$ phase shifts

Buck potential

- V=-122.6 exp(-(r/2.13)²)
- deep
- ℓ independent

Others: similar quality

- 3α spectroscopy
 - Bound states: simple diagonalization
 - Resonances: box method (Maier et al. JPB 13 (1980) L119)

size of the box

➔ narrow resonance near 2 MeV

➔ no satisfactory potential!!

Projection technique: E vs Λ

H. Matsumura et al., Nucl. Phys. A776 (2006) 1

No ground state if Λ too large

Further problem: definition of the forbidden states Projector: $P=\sum_{f}|\psi_{f}(x)
angle\langle\psi_{f}(x)|,$

Two possible definitions:

- 1. $\psi_f(x)$ is the exact solution associated with the potential
- 2. $\psi_f(x)$ is consistent with the cluster theory \rightarrow h.o. orbitals

Conclusion

- 3-body continuum much more complicated than 2-body continuum (hyperspherical coordinates)
 - \rightarrow propagation method is necessary to achieve a good convergence
- Recent developments: 2 propagation methods (necessary to use the projection technique)
- Use of the Lagrange-mesh technique for bound and scattering states:
 - fast (no integral for the matrix elements)
 - accurate (stability with the channel radius a)
 - Coulomb easily included
- ⁶He: relatively simple, good test case
- ¹²C: More complicated (no suitable $\alpha + \alpha$ potential) \rightarrow in progress
 - ► Matsumura et al: BFW potential should be adapted (range)
 - ► 3-body forces?
 - ► Non-local potentials (based on RGM kernel)?
 - Microscopic approach? (for the moment: spectroscopy only)

