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Many applications of 3-body models:

e Halo nuclei: ®He=a+n+n, “Be="2Be+n+n, etc.

e Unbound nuclei: "H=3H+n+n, ""He=8He+n+n, etc.
e Cluster states: 2C=a+o+a

e Reactions: "Be(p,y)®B, with "Be=a+3He

e Hypernuclei

 Exotic nuclei: low separation energies (or <0) =» continuum states are fundamental
breakup processes need 3-body continuum wave functions

 Astrophysics: some 3-body processes are important
o+ot+n
o+o+a
others?



Jacobi coordinates x, y,

Y1
. l X4 3 sets (x, y), i=1,2,3

Hyperspherical coordinates:

> >, 2 2, 2 2, 2
pe=x] Tty =25+ y5 =23+ Y3

o; = arctan L
L T 6 coordinates
Qxi, Qyz’
Hamiltonian:

H=Y2 1T, + Yi<;V;j to be expressed in (p,2u; Q)



Kinetic energy

T=T1+Tr+T3=—

dp? = pdp p?

R? (0% 50 K2*(Qs)
QmN ’

With K2(£2) = angular operator (equivalent to L2 in two-body systems)

0ol 0ol
* Eigenfunctions: Y, (§25) = ¢ “ () [ng(Qx) ® Yey(Qy)}
=hyperspherical harmonics

* Eigenvalues : K(K+4)

LM,

With [, Iy = angular momenta associated with x, y
K = hypermoment

®(a) = Jacobi polynomial

JM
] , Wwith S = total spin

| ),
Spin: ygngSK(Q) = [yf{Lv(Q) ®x°



Schradinger equation HwWJ/MT — gy JM=

M= is expanded over the hyperspherical harmonics

wIMT(p,Q5) =p752 N X nsk(e) x VIV 1sk ()
lolyLSK

\ J
- y

To be determined Known functions

— Set of equations for XgJ;%yLSK(p)

K <d2 B (K+3/2)(K-|—5/2)> _E]

| 2Tn’N dp2 92 K~/

X9k (p)+ X Viths 5 (p) X (p) = O,

Y = (EacﬁyLS)

* Potential determined numerically
*This system is truncated at K = K__,

« Common to bound and continuum states




Size of the system:

Example: éHe = a+n+n : S=0 or 1

J =0 J=2¢

K__ S=0 S=01 S=0 S=0,1
8 9 15 16 46
12 16 28 33 99
16 25 45 56 172
20 36 66 85 265
24 49 91 120 378

To be multiplied by the number of basis functions (~ 20 - 30)
— large systems for high J values



Removal of 2-body forbidden states: 2 possibilities
* Projection: Replace V; by V;+AP; with
* P,=two-body projector (non local)
« A=large energy (typically ~106 to 108 MeV)
= 2-body forbidden states are pushed at high energy

« Supersymmetry: replace the potential by its supersymmetric partner

\

p \/
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Supersymmetric transformation

D. Baye, PRL58 (1987) 2738

atn: 1f.s. for €=0
o+a: 2 f.s. for €=0, 1 f.s. for €=2




P. D., E. Tursunov, D. Baye, Nucl. Phys. A 765 (2006) 370

* Finite bases = use of the R-matrix method

 Long range of the potential

- large bases
-> propagation techniques are necessary

» Three-body coulomb phase shifts

» Eigenphases




Principle of the R matrix 0000

The space is divided in two re]%ions:

r<a: x;{?nt(P) = Y _ Ci; fi(p/a) (Legendre functions)
=1

rza X ,(p) given by (T — E)x&(p) = 0 (V negligible)
02 50 K(K+4)

8—p2 ;ap — ,02 + K2 Xi,ext(P> =0

Exact (asymptotic) solution: X;axt(p) = Ai(kp) Y2 (1i(kp) — UijO;(rp))

With A= amplitude
I, O,= ingoing and outgoing functions (depend on Bessel
functions Y,,, Jk.,)
K = wave number = (2mE/#r?)"?

U; = collision matrix : provides the information about the collision
should not depend on a



Peculiarities of 3-body problems

2-body
Internal region External region
| | >
0 Any V, a V; analytical p
Solutions analytical (Bessel,
Coulomb)
3-body
Internal region Intermediate region External region
| | | >
0 Any V; a V; analytical (here ~ 1/p? a V; analytical (here ~ 1/p*) p
i Vi eco) Solutions analytical
Solutions NOT analytical
a~20-30fm

a’ ~ 1000 fm — propagation techniques are necessary



Two propagation methods

1. General properties

* The R matrix is determined at radius a from the basis functions
(typically a ~25 fm , N ~ 25)

« The R-matrix is a link between the wave function and its derivative at p=a

d
X:[:]ﬂ-(a’) ZRz] ( dp )
p=a

2. Propagation of the wave function

*The Schrodinger equation is integrated from p=a to p=a’ with the Numerov
algorithm

(T = E)x{™(p) + > Vij(p)x]"(p) = 0
N
with Vj(p) known analytically: Vii(p) =~ Z

/c

3—|—2k

should converge with N, (typically N, ~ 5-10)
~coefficients o are determined from the potential

*Not possible with projection on pfs (non local potential)



3. Propagation of the R matrix
e Burke et al., Comp. Phys. Com. 27 (1982) 299
e Common to supersymmetry and projection techniques
e |dea: to split the interval [a,a'] in N pieces

a, a, ds

e In sub-interval i, define basis functions
e Here: Lagrange functions
e Determine the R matrix R, from R, ,

e Typical values: a~40 fm, a'~1000 fm
N~30 with 20-30 basis functions

Main difficulty: matrix elements of the projector on forbidden states



0000
Example: ®He=a+n+n e0000

dependence on the channel radius a

J=0", K=0

a=20 fm, N=20

without
propagation

with propagation

without
propagation

a=60 fm, N=60




Comparison: projection to pfs €<—-> supersymmetry
Done on ®He, J=0*, K __,=16

150
J=0"
120
7 AW
—~ 90 r ,
§ / A=1e2, 1e3, 1e4
= 60 supersymmetry
30
O 1 1 1 1
0 2 4 6 8

=» very close to each other for 6He

10



Eigenphases

For large K values the number of channels is quite large: ~100-200
—> eigenphases of the collision matrix

A simple example: a+n+n, J=2* , Kmax=2
- 4 channels

before diagonalisation after diagonalisation

240

§=0,L=2, f=0,f=2
I S=1,L=1, f=1, f=1 180 |

§=1L=2, f=1, =1 120 |

0 (deg))

60 |
$=0,L=2, =2, (=2

1 2 3 4 5 6 T
1 2 3 4 5 6

-60



Coulomb phase shifts
For 2-body: 6=0y+0.
For 3-body: more complicated since the coulomb phase shifts are not

diagonal

> U =UPunUsY2.

where U is obtained from the Coulomb potential only




®He and °Be phase shifts (eigenphases): similar to |. Thompson et
al, PRC61 (2000) 024318
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e Many works on '°C: recently above the 3a threshold

9.64| ] s
- "Hoyle state": astrophysics
; |
7.6542T : o 23666 1O pny
| *Be +a
m H .
4.4389 . Important issues:
* 0*, = Bose-Einstein condensate?
« 2* partner of 0*, (exists? where?)
2 IOt * Fynbo et al.: no 2%, but a 0%,

e Broad resonances - importance of a 3-body continuum model
e o+o scattering well described by different potentials
deep potentials (Buck potential)
shallow potentials (Ali-Bodmer potentials)
= we may expect a good description of the 3o system



e o+o phase shifts
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-50

Ecm (MeV)

Buck potential

» VV=-122.6 exp(-(r/2.13)?)
» deep

* ¢ independent

Others: similar quality



3a. spectroscopy
e Bound states: simple diagonalization

o Resonances: box method (Maier et al. JPB 13 (1980) L119)

1.00E+01
9.00E+00
8.00E+00
7.00E+00
6.00E+00
5.00E+00

Energy

4.00E+00
3.00E+00
2.00E+00
1.00E+00

0.00E+00
25 30 35 40

45

50

size of the box

=» narrow resonance near 2 MeV



12C spectrum, J=0* -8
'Y XX
— — — o000
o0
. — O
exp ABDO AB Buck+sup Buck+sup Buck+ proj
x 1.088

=» no satisfactory potential!!



Projection technique: Evs A
H. Matsumura et al., Nucl. Phys. A776 (2006) 1

No ground state if A too large
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Further problem: definition of the forbidden states

Projector: P = Z |¢f($)><¢f(w)|a
/

Two possible definitions:
1. w(x) is the exact solution associated with the potential

2. y{(x) is consistent with the cluster theory - h.o. orbitals

0 T \ P 7 — 4
1.Ex02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09
—e—exact
. —=—b=1.36 fm =»strong difference
% b=1.40 fm cge s .
= =>» sensitivity with b
L " n .
=>"almost" forbidden
. . . . | states

A (MeV)




» 3-body continuum much more complicated than 2-body continuum
(hyperspherical coordinates)
— propagation method is necessary to achieve a good convergence

Recent developments: 2 propagation methods (necessary to use the
projection technique)

Use of the Lagrange-mesh technique for bound and scattering states:
« fast (no integral for the matrix elements)
» accurate (stability with the channel radius a)
» Coulomb easily included

%He: relatively simple, good test case

« 12C:  » more complicated (no suitable a+a. potential)> in progress
» Matsumura et al: BFW potential should be adapted (range)
» 3-body forces?
» Non-local potentials (based on RGM kernel)?
» Microscopic approach? (for the moment: spectroscopy only)



