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Motivation — ‘two-nucleon’ degrees of freedom

Can one observe experimentally the correlations of pairs of
nucleons in exotic nuclel — by using suitable nuclear
reactions (specifically, with fast secondary beams) ?

Will discuss the 2N knockout reaction mechanisms:

(1) specific first test cases and applications (ii) sensitivity to
pair properties (iii) can these be exploited for spectroscopy
of exotic systems and 2n correlations in n-rich systems?

Quenching of calculated single-particle strengths is a
common feature in comparisons of structure calculations
(e.g. the shell model) with experiment (an 0.7 factor In
near-stable nuclei). What are the corresponding
observations for 2N removal?



Nucleon removal (one and two): 70 ~ 120 A MeV
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Experiments are inclusive (with respect to the target final
states). Core final state measured — using gamma rays —
whenever possible — and also momenta of the residues c.
Cross sections can be large and they include both:
Break-up (elastic) and stripping (inelastic/absorptive)
Interactions of the removed nucleon(s) with the target




Single-neutron knockout from 1/C
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Spectroscopy: one- and two-nucleon overlaps
FJM(F) — <7?7 (I)c|(I)A—I—1>
SN — EA—I—l — Ec
() = C(J)bsm(T)

Spectroscopic
factor/strength

C2S(J) = |Cy?

In two-nucleon case there are (in general)
several coherent 2N configurations — the
two-nucleon motions are correlated

FJM(L 2) — Zjle C<]1]2J) [¢j1m1 o0 ¢j2m2]JM




Target drills out a cylindrical volume at the surface

Cross section will be sensitive
to the spatial correlations of
pairs of nucleons near surface

No spin selection rule (for S=0
versus S=1 pairs). Reaction
mechanism removes anything
that is in the way

We can understand the
Important correlations by
looking at the 2N wave
function/probabillities in this
sampled volume
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Two-neutron knockout: example 1/'C - 15C
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Two-neutron knockout: example 1°C - 14C
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Inclusive 2n removal yields — staggering (is seen)
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Two nucleon knockout — restricted direct reaction set
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Direct two-neutron knockout:

example 3%Ar > 32Ar
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Sudden removal — eikonal model cross sections

| 51(01) ’@ T

g = 2J1-|-1 ZMfdg<FJM|O(C,1,2)|FJM>

2N Stripping : O(c, 1,2) = |S:%(1 — [S1]%)(1 — |S2]?)

J.A. Tostevin et al.,, PRC 70 (2004) 064602.
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Must include all 2N removal mechanisms

Oabs — 1 — |Sc|2|S1|2‘52|2

1 = 'SCQ+(>§®] 1 core survival

< [|S1P+ (1 —=|5%)] pandnucleon
< []S2*+(1—1Se%)] ) "removal”
Orps — | 19:2|(1 = 1S11%)(1 — |S2f*) 2N absorption

+ | 1815117 (1 — |S2 %) } 1N absorption
+ | 1Se?|(1 = |S1]?)|S2/° 1N diffracted

+ 2N diffraction contributions ~ 6 — 8%

J.A. Tostevin et al., PRC in press.
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The diffractive/absorption contributions
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Correlated: 28Mg — 2°Ne(0%,2%,4%), 82.3 MeV/u
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Two-neutron removal — g.s. branching ratios
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Two-nucleon removal — suppression - R,(2N)
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Look at momentum content of sampled volume

Rz

Probabillity of a residue with parallel momentum K

P(K,5.5,) = Z</dk1/dk2 S(K + k1 + ko)
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J. A. Tostevin, RNB7, Eur. Phys. J. A, in press
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Two nucleon KO — J-dependence of predicted p,,

Residue momentum probability
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Summary and lessons to date

At fragmentation energies (>50 MeV/u) reaction theory is rather
accurate providing guantitative tests of structure model
predictions.

Limited two neutron/proton knockout data — but already reveal
sensitivity to (correlated) configurations in 2N wave functions.

Direct 2N knockout reaction mechanism can be very clean - the
Combination of N and 2N removal reactions will help elucidate
shell gaps, and structures around shell closures.

Five data sets are consistent with shell model spectroscopy and
suppression [~0.50(5)] of 2N shell model strength — analog of 1N
removal suppression (of 0.6 — 0.7) for well-bound nucleons.

It is predicted that there is valuable structure information to be
gained from more final-state-exclusive residue momentum
distribution measurements.
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