The ¹¹Be and the evolution of the shell structure

C. Nociforo GSI, Darmstadt

ECT* Trento, 30 Oct -3 Nov 2006

What exactly?

¹⁵C Excitation energy (MeV)

Results of QRPA calculations

Nuclear structure model

Quasiparticle-core coupling model (QPC) (Bohr & Mottelson)

 $H = H_{11} + V_{22} + V_{13}$

Quasiparticle-RPA approach:

 $|nlj\rangle = \alpha_{im}^+|0\rangle$

where $|0\rangle$ is the g.s. correlated of the even-mass core and

$$\alpha_{jm}^{+} = u_{j}a_{jm}^{+} - (-1)^{j+m}v_{j}a_{j-m}$$

by Bogolyubov-Valatin transformation

 $v_{i}^{2} + u_{i}^{2} = 1$ with

H. Lenske, Progr. in Part. and Nucl. Phys. A693(2001)616

Nuclear structure calculations

Calculation of s.p. strength distributions of the odd-mass nucleus :

1. Shell-model calculation

 $\begin{cases} s.p.energies and wave functions for <math>p$ and n(WS potential + HFB) E = 100 MeV (L_{max}= 4), R = 35 fm

3. DCP calculations

2. <u>QRPA</u> on the even-mass core $\begin{cases} particle state probabilities for$ *p*and*n* $natural and unnatural parity states calculated up to <math>E_x = 35 \text{ MeV} \end{cases}$

RPA-Green function method1qp: contribution of 'major' shells up to 18 MeV3qp: QRPA Ex \leq 20 MeVstate-dependent pairing, D3Y-G matrix inter.

2. and **3.** with the same microscopic interaction

Results of DCP calculations

$s_{1/2}$ and $p_{1/2}$ strength distributions of ¹¹Be

Strong fragmentation of the strength appears at $4 < E_x < 15 \text{ MeV}$

C. Nociforo et al., Eur. Phys. J.A27 (2006)287

Results of DCP calculations

Conclusions

• Exploration of excited states of light neutron-rich nuclei like ¹¹Be is a rich source of information about nuclear structure

• High energy resolution is crucial to that purpose

• Use of refined microscopic theories is also fundamental

Thanks to

H. Lenske

Institut für Theoretische Physik, Universität Giessen, Giessen, Germany

for the DPC theory work

A. Cunsolo, F. Cappuzzello, A. Foti, S.E.A. Orrigo, J.S. Winfield

INFN-LNS, Catania, Italy INFN-Sez. Catania, Catania, Italy Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy

S. Fortier, D. Beaumel

Institut de Physique Nucléaire, IN2P3-CNRS, Orsay, France