Helium radii & proton analyzing powers in the NCSM

Petr Navratil Lawrence Livermore National Laboratory* E. Caurier (Strasbourg), I. Thompson (LLNL)

NCSM collaborators:

W. E. Ormand, S. Quaglioni, V. Gueorguiev (LLNL), J.P. Vary (ISU), A. Nogga (Julich), C. Forssen (Goteborg), R. Roth (Darmstadt)

*This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. UCRL-PRES-225593

Halo 06, ECT* Trento, 1 November 2006

- Motivation
- *Ab initio* no-core shell model (NCSM)
- ^{4,6,8}He binding energy and radius calculation
- ⁶He excitation spectrum
- ⁶He scattering off polarized proton target
 - Comparison to p+⁶Li
- Outlook & conclusions

- Precise measurement of ⁶He charge radius recently performed at ANL
 - Laser spectroscopy on individual ⁶He atoms confined in magneto-optical trap
 - $r_{\rm c} = 2.054(14) \, {\rm fm}$
 - Much larger than ⁴He charge radius of 1.673(1) fm
 - Due to two loosely bound neutrons forming a halo
- Measurement of ⁸He charge radius under way
- Challenge for *ab initio* methods to reproduce this measurement and predict the ⁸He charge radius
- Ongoing experiment of ⁶He scattering off polarized proton target by CNS at RIKEN
 - Challenge to understand the ⁶He+p polarization data simultaneously with the p+⁶Li polarization data

Ab Initio No-Core Shell Model (NCSM)

- Presently only two methods capable to describe simultaneously ⁴He, ⁶He, ⁸He and ⁶Li
 - Green's function Monte Carlo (GFMC) by ANL-LANL group
 - *Ab initio* no-core shell model (NCSM)
- Two issues
 - Convergence of the many-body method
 - Quality of the interaction (Hamiltonian)
- <u>NCSM:</u>
- Many-body Schroedinger equation
 - *A*-nucleon wave function
- Hamiltonian
 - Realistic high-precision nucleon-nucleon potentials
 - Coordinate space Argonne, INOY ...
 - Momentum space CD-Bonn, χPT N³LO ...
 - Three-nucleon interaction
 - Tucson-Melbourne TM', χ PT N²LO
- Finite harmonic-oscillator basis
- Need to construct effective interaction appropriate to the basis truncation
 - Done by a unitary transformation in a cluster approximation
- By construction convergent to exact solution with basis enlargement and/or increase in cluster size

 $H|\Psi\rangle = E|\Psi\rangle$

Convergent to exact solution

- Description of halo nuclei requires a large HO basis expansion of the wave function
 - Limit ourselves to NN interaction only and to the two-body cluster approximation
 - Shell model code Antoine (E. Caurier)
 - ⁶He up to N_{max} =16 (dimension 700 million)
 - ⁸He up to $N_{\text{max}}=12$ (dimension 500 million)
 - Dimensions smaller than possible in a standard shell model calculation (\approx billion)
 - Still more challenging due to large number of *nljm* states and an asymmetry of the proton and neutron numbers
- CD-Bonn 2000 (R. Machleidt, Phys. Rev. C 63, 024001 (2001))
 - One-boson exchange π , ρ , ω + phenomenological σ mesons
 - provide an accurate fit to NN data with $\chi^2 = 1.02$
- INOY (P. Doleschall *et al.*, Phys. Rev. C **67**, 064005 (2003))
 - Inside nonlocal, outside Yukawa
 - Multi-nucleon forces absorbed by short-range nonlocal terms in the NN interaction
 - In addition to the fit of NN phase shifts and deuteron properties *A*=3 binding energies fitted as well
 - Small modification of the *P*-waves to improve description of NNN analyzing powers
 - Very good convergence with NCSM for both *s*-shell and *p*-shell nuclei

⁶He calculation

⁶He calculation

⁸He calculation

- 14

<i>r_p</i> [fm]	Expt.	CD-Bonn 2000	INOY		
⁴ He	1.455 (1)	1.45 (1)	1.37(1)		
⁶ He	1.912 (18)	1.89 (4)	1.76(3)		
⁸ He					
r_n [fm]	Expt.	CD-Bonn 2000	INOY 2.55(10)		
⁶ He	2.59-2.85	2.67 (5)			
⁸ He	2.69 (4)				
E _B [MeV]	Expt.	CD-Bonn 2000	INOY		
⁴ He	28.296	26.16 (6)	29.10 (5)		
⁶ He	29.269	26.9 (3)	29.38 (10)		
⁸ He	31.408 (7)	26.0 (4)	30.30 (30)		

⁸He calculation

- 14

+ 15

- Point-proton rms radius ٠
 - CD-Bonn 2000 ___
 - INOY _
 - Slightly smaller than ${}^{6}\text{He} r_{p}$ —
 - Much larger than ${}^{4}\text{He} r_{p}$ —
 - CD-Bonn 2000 result is a _ more realistic prediction

r_p [fm]	Expt.	CD-Bonn 2000	INOY	
⁴ He	1.455 (1)	1.45 (1)	1.37(1)	
⁶ He	1.912 (18)	1.89 (4)	1.76(3)	
⁸ He		1.88 (6)	1.74(6)	
<i>r</i> _n [fm]	Expt.	CD-Bonn 2000	INOY	
⁶ He	2.59-2.85	2.67 (5)	2.55(10)	
⁸ He	2.69 (4)	2.80 (10)	2.60(10)	
E _B [MeV]	Expt.	CD-Bonn 2000	INOY	
⁴ He	28.296	26.16 (6)	29.10(5)	
⁶ He	29.269	26.9 (3)	29.38 (10)	
⁸ He	31.408 (7)	26.0 (4)	30.30 (30)	

- 5 *p*-shell states
- 0^+_3 higher- $\hbar\Omega$ -dominated state
- Configurations at $N_{\text{max}}=16$ ($\hbar\Omega=9$ MeV):

⁶ He	0 ħΩ	2 ħΩ	4 ħΩ	6 ħΩ	8 ħΩ	10 ħΩ	12 ħΩ	14 ħΩ	16 ħΩ
0 ⁺ 1	0.43	0.18	0.16	0.09	0.06	0.04	0.02	0.01	0.01
0 ⁺ 2	0.28	0.19	0.20	0.12	0.08	0.05	0.03	0.02	0.02
0 ⁺ ₃	0.02	0.27	0.20	0.20	0.13	0.09	0.05	0.030	0.02

• GFMC ⁶He calculations with the AV8' NN potential place the 0^+_2 state at 4.96(9) MeV

- Starting point: ⁶He and ⁶Li groundstate and transition translationallyinvariant densities
 - ⁶Li point-proton rms radius from CD-Bonn 2000 in agreement with experiment
 - Validation of our ⁶He point-proton rms radius calculation
- Spin-orbit interaction

$$V_p^{so}(r) = \lambda_{v_{so}} \frac{1}{r} \frac{d}{dr} \left(\frac{2}{3} \rho_n[r] + \frac{1}{3} \rho_p[r] \right) \vec{l} \cdot \vec{\sigma}$$

• JLM central optical model potential

$$U(r,E) = (t\sqrt{\pi})^{-3} \int \frac{U_{NM}(\rho[\frac{1}{2}(r+r')], E)}{\rho[\frac{1}{2}(r+r')]} \exp(-|\vec{r} - \vec{r}'|/t^2) \rho[r'] d\vec{r}'$$

• Parameterization from E. Bauge *et al.*, PRC **58**, 1118 (1998)

⁶He scattering off polarized proton target at 71 MeV/A

- Simultaneous χ^2 -fit to ⁶He+p and ⁶Li+p elastic scattering and analyzing power data
 - CD-Bonn 2000, $12h\Omega$, $h\Omega=11$ MeV NCSM density
 - JLM microscopic optical potential + spin-orbit potential
 - Fresco coupled-channel calculations
 - Four scaling parameters fitted
 - $\lambda_{v}=0.90, \lambda_{w}=1.00, \lambda_{vso}=0.81, \lambda_{wso}=0.98$

⁶He scattering off polarized proton target at 71 MeV/A

- Analyzing powers not fitted well
- Calculated ⁶Li and ⁶He A_v tends to have the same sign
- Coupling of the ⁶He 2⁺ 1 excited state appears important
- Additional terms in the p+6Li optical potential likely required

• RGM with *ab initio* NCSM cluster wave functions and effective interactions

$$\begin{aligned} \mathbf{H}\varphi(r) &= E \ \mathbf{N}\varphi(r) \\ \mathbf{N}\varphi(r) &= \int \mathrm{d}r' N(r,r')\varphi(r') \\ N(r,r') &= \left\langle \Phi_r^{(A)} \middle| \Phi_{r'}^{(A)} \right\rangle \\ H(r,r') &= \left\langle \Phi_r^{(A)} \middle| H \middle| \Phi_{r'}^{(A)} \right\rangle \end{aligned}$$

- First step: Norm kernel (*a*=1)
 - Jacobi coordinates

(Sofia Quaglioni)

- $N_{\text{max}} = 60 \text{ for } (A-1) = 3$
- $N_{\text{max}} = 20$ for (*A*-*l*)=4
- Single-particle coordinates, Slater determinants
 - Good for *A*>4
 - $N_{\text{max}} = 16$ for (A-1)=6
 - Two-step calculation
- Tested to give the same answer when both choices feasible (A=5)

$$\begin{split} &\langle \Phi_{(\alpha'I_{1}T_{1}',\frac{1}{2}\frac{1}{2})s'l'}^{(A-1,1)JT};n'l'|P_{A,A-1}|\Phi_{(\alpha I_{1}T_{1},\frac{1}{2}\frac{1}{2})sl}^{(A-1,1)JT};nl\rangle = \\ &\sum \langle A - 1\alpha'I_{1}'T_{1}'|(N_{A-2}i_{A-2}T_{A-2}T_{A-2},n'_{A-1}l'_{A-1}\mathcal{J}_{A-1}\frac{1}{2})I_{1}'T_{1}'\rangle \\ &\langle (N_{A-2}i_{A-2}I_{A-2}T_{A-2},n_{A-1}l_{A-1}\mathcal{J}_{A-1}\frac{1}{2})I_{1}T_{1}|A - 1\alpha I_{1}T_{1}\rangle \\ &\langle n'l'n'_{A-1}l'_{A-1}\lambda|n_{A-1}l_{A-1}nl\lambda\rangle_{A(A-2)} \left\{ \begin{array}{c} \frac{1}{2} & T_{A-2} & T_{1}'\\ \frac{1}{2} & T & T_{1} \end{array} \right\} \hat{T}_{1}\hat{T}_{1}'(-1)^{T_{1}+T_{1}'+1} \\ &\hat{s}\hat{s}'\hat{\lambda}^{2}\hat{Y}^{2}\hat{I}_{1}\hat{I}_{1}'\hat{\mathcal{J}}_{A-1}\hat{\mathcal{J}}_{A-1}'(-1)^{s+s'+l'_{A-1}+l} \left\{ \begin{array}{c} \mathcal{J}_{A-1}' & I_{1}' & I_{A-2}\\ \mathcal{J}_{A-1} & I_{1} & Y \end{array} \right\} \\ &\left\{ \begin{array}{c} l'_{A-1} & \frac{1}{2} & \mathcal{J}_{A-1}'\\ I_{1} & Y & s \end{array} \right\} \left\{ \begin{array}{c} I_{1}' & \mathcal{J}_{A-1} & Y\\ l_{A-1} & s' & \frac{1}{2} \end{array} \right\} \left\{ \begin{array}{c} s' & J & l'\\ l_{A-1} & l & \lambda\\ Y & s & l'_{A-1} \end{array} \right\} . \end{split}$$

$$\sum_{n_{r}l_{r}n_{r}'l_{r}'J_{r}} \langle \Phi_{(\alpha'I_{1}'T_{1}',\beta'I_{2}'T_{2}')s'l'}^{(A-a,a)JT}; n'l' | P_{(A-a,a)} | \Phi_{(\alpha I_{1}T_{1},\beta I_{2}T_{2})sl}^{(A-a,a)JT}; nl \rangle_{\rm SD} = \\ \sum_{n_{r}l_{r}n_{r}'l_{r}'J_{r}} \langle \Phi_{(\alpha'I_{1}'T_{1}',\beta'I_{2}'T_{2}')s'l_{r}'}^{(A-a,a)} | \Phi_{(\alpha I_{1}T_{1},\beta I_{2}T_{2})sl_{r}}^{(A-a,a)J_{r}T}; n_{r}l_{r} \rangle \\ \sum_{NL} \hat{l}\hat{l}'\hat{J}_{r}^{2}(-1)^{s+l_{r}-s-l_{r}'} \left\{ \begin{array}{c} s \ l_{r} \ J_{r} \\ L \ J \ l \end{array} \right\} \left\{ \begin{array}{c} s' \ l_{r}' \ J_{r} \\ L \ J \ l' \end{array} \right\} \langle n_{r}l_{r}NLl |00nll \rangle_{\frac{a}{A-a}} \langle n_{r}'l_{r}'NLl' |00n'l'l' \rangle_{\frac{a}{A-a}} \rangle \\ \end{array} \right\}$$

$${}_{\mathrm{SD}} \langle \Phi^{(A-1,1)JT}_{(\alpha' I'_1 T'_1, \frac{1}{2} \frac{1}{2})s'l'}; n'l' | P_{A,A-1} | \Phi^{(A-1,1)JT}_{(\alpha I_1 T_1, \frac{1}{2} \frac{1}{2})sl}; nl \rangle_{\mathrm{SD}} = \\ \frac{1}{A-1} \sum_{jj'K\tau} \left\{ \begin{array}{cc} I_1 & \frac{1}{2} & s \\ l & J & j \end{array} \right\} \left\{ \begin{array}{cc} I'_1 & \frac{1}{2} & s' \\ l' & J & j' \end{array} \right\} \left\{ \begin{array}{cc} I_1 & K & I'_1 \\ j' & J & j \end{array} \right\} \left\{ \begin{array}{cc} I_1 & \tau & T'_1 \\ \frac{1}{2} & T & \frac{1}{2} \end{array} \right\} \\ \hat{s}\hat{s}'\hat{j}\hat{j}'\hat{K}\hat{\tau}(-1)^{I'_1+j'+J}(-1)^{T_1+\frac{1}{2}} + T \\ \mathrm{SD} \langle A - 1\alpha' I'_1T'_1 | || (a^{\dagger}_{nlj\frac{1}{2}}\tilde{a}_{n'l'j'\frac{1}{2}})^{(K\tau)} ||| A - 1\alpha I_1T_1 \rangle_{\mathrm{SD}} \end{cases}$$

- *Ab initio* NCSM capable to describe loosely bound systems
 - Very challenging problem
 - Large HO basis expansion of the wave function
 - Large dimensions
 - Asymmetry in proton-neutron number adds to technical difficulty (Antoine code)
- Convergence of the ^{4,6,8}He charge radius
 - CD-Bonn 2000 ^{4,6}He charge radii in agreement with experiment
 - ⁸He point-proton rms radius prediction $r_p = 1.88(6)$ fm
 - INOY NN potential underestimates He charge radii
- ⁶He elastic scattering calculations
 - Mixing of *ab initio* and semi-microscopic approaches
 - Good description of the cross section
 - Improvements needed for the analyzing power description
- In progress:
 - RGM with *ab initio* NCSM cluster wave functions and effective interactions