Halo and Cluster Structures in Fermionic Molecular Dynamics

Hans Feldmeier, GSI, Darmstadt Halo 06

> ECT*, Trento Oct. 30 – Nov. 03, 2006

Fermionic

Slater determinant

$$Q\rangle = \mathcal{A}\left(\left|q_{1}\right\rangle \otimes \cdots \otimes \left|q_{A}\right\rangle\right)$$

antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp\left\{-\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}}\right\} \otimes |\chi_{i}\rangle \otimes |\xi\rangle$$

 Gaussian wave-packets in phase-space, spin is free, isospin is fixed

 Hilbert space contains shell-model, clusters, halos, scattering states

Dynamics in Hilbert space

spanned by one or several non-orthogonal $|Q^{(a)}\rangle$

$$\left|\Psi; J^{\pi}M\right\rangle = \sum_{a,K'} \psi_{a,K'} P^{J^{\pi}}_{\mathcal{M}K'} P^{\mathbf{P}=0} \left| Q^{(a)} \right\rangle$$

variational principle $\rightarrow Q^{(a)} = \{ q_{\nu}^{(a)}, \nu = 1 \cdots A \}, \psi_{a,K'}$

Halo 06 -

Antisymmetrization

Nucleon-Nucleon Potential

Effective two-body interaction

- correlated 2-body interaction $\widehat{H} = C^{\dagger} H C = T + V_{UCOM}$ treats short range repulsive and tensor correlations
- additional small 2-body correction (momentum-dependent and spin-orbit) to make up for 3-body forces and long range tensor correlations
- fit correction term to binding energies and radii of "closed-shell" nuclei
- altogether a 15% correction to the *ab-initio* V_{UCOM}

Projection to restore Symmetries

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on
 - parity
 - linear momentum
 - angular-momentum
- projected state

Variation After Projection (VAP)

- effect of projection can be large
- perform Variation after Parity Projection PAV^{π}
- perform PAV^π by applying constraints on radius, dipole moment, quadrupole moment or octupole moment and minimize the energy in the projected energy surface (GCM)
- perform true VAP

$$P_{\sim}^{\pm} = \frac{1}{2} \left(1 \pm \Pi \right)$$

$$P_{\sim}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

$$P_{MK}^J = \frac{2J + 1}{8\pi^2} \int d^3 \Omega D_{MK}^{J*}(\Omega) R(\Omega)$$

$$\left| \mathbf{Q}; J^{\pi}M, K \right\rangle = P_{\sim}^{\pm} P_{MK}^J P_{\sim}^{\mathbf{P}=0} \left| \mathbf{Q} \right\rangle$$

$$\left| \mathbf{Q}^{\pm} \right\rangle = \frac{1}{2} \left(1 \pm \prod_{\sim} \right) \left| \mathbf{Q} \right\rangle$$

Multi-Configuration Mixing

most general projected state for multi-configuration calculations

$$\left|J^{\pi}M;\Psi\right\rangle = \sum_{K'a} \psi_{K'a} \mathop{\mathbb{P}}_{\sim}^{\pi} \mathop{\mathbb{P}}_{MK'}^{J} \mathop{\mathbb{P}}_{\sim}^{\mathbf{P}=0} \left|\mathcal{Q}^{(a)}\right\rangle$$

• task: find a set of intrinsic states $\{ | Q^{(a)} \rangle, a = 1, ..., N \}$ that describe the physical situation well

Multi-configuration calculations

$$\underset{\sim}{H} \mid J^{\pi}M, n \rangle = E_n^{J^{\pi}} \mid J^{\pi}M, n \rangle$$

— diagonalize Hamiltonian in this set of nonorthogonal projected intrinsic states

$$\sum_{K'b} \langle Q^{(a)} | HP_{KK'}^{J^{\pi}} P^{\mathbf{P}=0} | Q^{(b)} \rangle \cdot c_{K'b}^{(n)} = E_n^{J^{\pi}} \sum_{K'b} \langle Q^{(a)} | P_{KK'}^{J^{\pi}} P^{\mathbf{P}=0} | Q^{(b)} \rangle \cdot c_{K'b}^{(n)}$$

- energy levels $E_n^{J^{\pi}}$ and eigenstates $|J^{\pi}M, n\rangle$ describing nuclear many-body system

$$\left| J^{\pi}M, n \right\rangle = \sum_{K'b} c_{K'b}^{(n)} P^{\pi} P^{J}_{\mathcal{N}K'} P^{\mathbf{P}=0} \left| Q^{(b)} \right\rangle$$

FMD - Variation, PAV^{π} , Multiconfig.

	E [MeV]	r _{charge} [fm]	$B(E2) [e^2 \text{fm}^4]$
V/PAV	-81.4	2.36	-
PAV^{π}	-88.5	2.51	36.3
Multiconfig(4)	-92.2	2.52	42.8
Multiconfig(14)	-92.4	2.52	42.9
Exp	-92.2	2.47	39.7 ± 3.3

¹²C excited 0^+ and 2^+ states

	Multiconfig	Experiment	
E_b [MeV]	92.4	92.2	-
<i>r_{charge}</i> [fm]	2.52	2.47	
$B(E2)(0_1^+ \to 2_1^+) \ [e^2 \text{fm}^4]$	42.9	39.7 ± 3.3	-
$M(E0)(0^+_1 \to 0^+_2)[\text{fm}^2]$	5.67	5.5 ± 0.2	
$\overline{r_{rms}(0^+_1)}$ [fm]	2.38		5 -
$r_{rms}(0^+_2)$ [fm]	3.42		Me
$r_{rms}(0^+_3)$ [fm]	3.85		Ш
$\overline{r_{rms}(2^+_1)}$ [fm]	2.44		-
$r_{rms}(2^+_2)$ [fm]	3.64		
$r_{rms}(2^+_3)$ [fm]	3.63		
$Q(2_1^+)[efm^2]$	5.85		
$Q(2_2^+)[efm^2]$	-23.65		
$Q(2_3^+)[e \text{fm}^2]$	5.89		

¹²C Hoyle State in Electron Scattering

 calculate formfactors, center-of-mass treated properly, formfactor is a *A*-body operator

$$F(\mathbf{q}) = \sum_{i} \left\langle \Psi_{a} \right| e^{i\mathbf{q} \cdot (\mathbf{x}_{i} - \mathbf{X})} \left| \Psi_{b} \right\rangle$$

- compare to experiment in Distorted Wave Born Approximation
- α-cluster and "BEC" calculated with mod. Volkov interation

M. Chernykh, P. von Neumann-Cosel, A. Richter et al. submitted to PRL

[&]quot;BEC" formfactors: Y. Funaki et al. EPJA 28(2006)259 and private communication

Helium Isotopes

dipole and quadrupole constraints

Helium Isotopes

Exp: Ozawa, Suzuki, Tanihata, NPA693 (2001) 32; Raman, Nestor, Tikkanen, Atomic Data and Nucl. Data Tables 78 (2001) 1

Helium Isotopes - Multi-Configuration Mixing

Exp: Ozawa, Suzuki, Tanihata, NPA693 (2001) 32; Raman, Nestor, Tikkanen, Atomic Data and Nucl. Data Tables 78 (2001) 1

cluster structure changes with addition of neutrons

Exp: Ozawa, Suzuki, Tanihata, NPA693 (2001) 32; Raman, Nestor, Tikkanen, Atomic Data and Nucl. Data Tables 78 (2001) 1

Exp: Ozawa, Suzuki, Tanihata, NPA693 (2001) 32; Raman, Nestor, Tikkanen, Atomic Data and Nucl. Data Tables 78 (2001) 1

Applications ¹¹Be positive parity intruder

Many-Body Hilbert Space for Scattering

Collective Coordinate Representation

Size Measure

- Operator \underline{B} measures extension of the system

$$\underset{\sim}{B} = \frac{1}{A^2} \sum_{i < j=1}^{A} (x(i) - x(j))^2$$

Asymptotic Interpretation $r \gg R_{C1} + R_{C2}$

Eigenvalues relate to relative distance r (for each J^πM)
B |β_l > = β_l |β_l >
⇒ β(r) = ¹/_A (<sup>A₁A₂/_Ar² + A₁R²_{C1} + A₂R²_{C2}) ⇒ r_l ↔ β_l
Eigenvectors are localized in β and r
</sup>

 $\langle \beta_l | \underset{\sim}{B^2} | \beta_l \rangle - \langle \beta_l | \underset{\sim}{B} | \beta_l \rangle^2 = 0$ $\Rightarrow \Psi(r_l) := \langle \beta_l | J^{\pi} M; \Psi \rangle$ relative wave function

Boundary Conditions 1

Implement boundary conditions using the Collective Coordinate Representation

• Eigenvalue problem for scattering state $|J^{\pi}M;\Psi\rangle$

• Express unknown ψ_{aK} by known asymptotic solution $\langle r | w \rangle = w(r)$ like

$$\frac{\left\langle \beta_{N} \left| \begin{bmatrix} H \\ \sim \end{bmatrix}^{s} \middle| J^{\pi} M; \Psi \right\rangle}{\left\langle \beta_{N} \middle| J^{\pi} M; \Psi \right\rangle} \stackrel{!}{=} \frac{\left\langle r_{N} \left| \begin{bmatrix} \frac{1}{2\mu} \left(-\frac{d^{2}}{dr^{2}} + \frac{\ell(\ell+1)}{r^{2}} \right) + \frac{Z_{1} Z_{2} e^{2}}{r}, \beta(r) \right]^{s} \middle| w \right\rangle}{\left\langle r_{N} \middle| w \right\rangle} \qquad s = 1, \cdots, n$$

FMD many-body world = asymptotic point charge world

 Hamiltonian and Overlap matrix get modified both depend on complex eigenvalue Z

Boundary Conditions 2

Different boundary conditions — Different physical situations

• Whittaker function

$$\langle r | w \rangle = W_{\ell}(\mathbf{k}r) , \ \mathbf{k} = +\sqrt{-2\mu \mathbf{E}}$$

- **bound state** with tail tunneling into Coulomb barrier, E < 0
- outgoing Coulomb scattering solution

 $\langle r | w \rangle = iF_{\ell}(\mathbf{k}r) + G_{\ell}(\mathbf{k}r) , \mathbf{k} = +\sqrt{2\mu Z}$

Gamov state with resonance energy and width $Z = E - i\Gamma/2$

• Coulomb scattering solution with phase shift

$$\langle r | w \rangle = F_{\ell}(\mathbf{k}r) + \tan(\delta_{\ell}(\mathbf{E})) G_{\ell}(\mathbf{k}r) , \ \mathbf{k} = +\sqrt{2\mu \mathbf{E}}$$

– continuum solution with phase shift $\delta_{\ell}(E)$, E > 0

⁷Be Levels Bound and in Continuum

Binding energies • implement boundary con--26 ditions using the **Gamov** FMD Exp. Frozen Frozen Exp. -28 +PAVpi state, outgoing only -30 Hamiltonian and Overlap 5/2--32 matrix get modified, -34 7/2complex eigenvalue -36 He4+He3 He4+He3 Be7 1/2-3/2--38 Be7 Be7

⁷Be **Phase Shift** $7/2^-$ **Resonance**

Data: R. J. Spiger, T. A. Tombrello, Phys. Rev. 163(1967)162

⁷Be **Phase Shift** 5/2⁻ **Resonance**

Data: R. J. Spiger, T. A. Tombrello, Phys. Rev. 163(1967)162

Data: R. J. Spiger, T. A. Tombrello, Phys. Rev. 163(1967)162

⁷Be **Phase Shifts, nonresonant**

Data: R. J. Spiger, T. A. Tombrello, Phys. Rev. 163(1967)162

Summary

Unitary Correlation Operator Method

- explicit description of short-range central and tensor correlations
- phase-shift equivalent correlated interaction $V_{\rm UCOM}$
- V_{UCOM} used in Hartree-Fock + many-body pertubation theory, no-core shell model, RPA ... (see talk of Robert Roth)

Fermionic Molecular Dynamics, $V_{\text{UCOM}} + \delta V$

- Structure of light nuclei
- Halos and clustering
- Resonances, scattering states, reactions

Microscopic unified approach for nuclear structure and reactions

- S. Bacca, C. Barbieri, A. Cribeiro, R. Cussons,
 K. Langanke, G. Martinez Pinedo, C. Özen, T. Milosic, R. Torabi
 GSI Darmstadt
- T. Böhlen, P. Hedfeld, H. Hergert, N. Paar, P. Papakonstantinou, R. Roth, A. Zapp Institut f
 ür Kernphysik, TU Darmstadt
- T. Neff NSCL, Michigan State University

FMD - Projection, Variation after Proj., Multiconfiguration

