HALO 06 .com Workshop: The Physics of Halo Nuclei (ECT*, Trento, Italy)

Probing Correlations in Many-Neutron Systems

F. Miguel Marqués Moreno *
 LPC-Caen (France)
 marques@lpccaen.in2p3.fr

* E295/E378: LPC-Caen [N.A. Orr, M. Labiche, G. Normand], Surrey, Oxford, Birmingham, ULB-Bruxelles [V. Bouchat], IReS-Strasbourg, GANIL, Orsay, Göteborg, Aarhus, Madrid

► low energy *N*-*N* interaction :

▶ neutron-neutron "collisions" ?

the n-n interaction

► low energy *N*-*N* interaction :

▶ neutron-neutron "collisions" ?

 \triangleright final state modified by V_{nn} !

- ▶ how is it modified ?
 - ⊳ by the n-n distance
 - ▷ by the n-n interaction

$$egin{aligned} \sigma(q) &pprox \ \Omega(q) imes \left| \int oldsymbol{\psi_d} \ \psi^*_s(oldsymbol{a_{nn}}) \ d^3r
ight|^2 \ &pprox \ \Omega(q) imes rac{1}{1+q^2 \, oldsymbol{a_{nn}}^2} \end{aligned}$$

F.M. Marqués (1)

the n-n configuration : interferometry

▶ the halo of ¹¹Li : $\bigcirc^{\bullet} \leftrightarrow \bigotimes^{\circ}$?

 $ightarrow \sigma(q) \equiv \Omega(q) imes C_{nn} \{\psi(r_{nn}), a_{nn}\}:$ $\rightsquigarrow \sigma(q) ext{ is measured}$ $\rightsquigarrow ext{ event mixing provides } \Omega(q) \dots$

the n-n configuration : interferometry

▶ the halo of ¹¹Li : $\bigcirc^{\bullet} \leftrightarrow \bigotimes^{\circ}$?

 $\triangleright \sigma(q) \equiv \Omega(q) \times C_{nn} \{ \psi(r_{nn}), a_{nn} \} :$ \$\sim \sigma(q)\$ is measured \$\sigma \constraint event mixing provides \$\Omega(q)\$...\$

event mixing : residual correlations !

$$m{C(p_1,p_2)} = rac{d^2\sigma/dp_1dp_2}{\left(d\sigma/dp_1
ight)\left(d\sigma/dp_2
ight)}$$

▷ mixing events provides :

$$egin{aligned} rac{d ilde{\sigma}}{dp} &= \int rac{d^2\sigma}{dp\,dk}\,dk \;= \ rac{d\sigma}{dp}\int C(p,k)\,rac{d\sigma}{dk}\,dk \;=\; rac{d\sigma}{dp}\,\langle C
angle(p) \end{aligned}$$

 \triangleright if this effect is ignored :

$$rac{d^2\sigma/dp_1dp_2}{\left(d ilde{\sigma}/dp_1
ight)\left(d ilde{\sigma}/dp_2
ight)} < C$$

event mixing : residual correlations !

$$oldsymbol{C}(p_1,p_2)=rac{d^2\sigma/dp_1dp_2}{\left(d\sigma/dp_1
ight)\left(d\sigma/dp_2
ight)}$$

▷ mixing events provides :

$$egin{aligned} rac{d ilde{\sigma}}{dp} &= \int rac{d^2\sigma}{dp\,dk}\,dk \;= \ &rac{d\sigma}{dp}\int C(p,k)\,rac{d\sigma}{dk}\,dk \;=\; rac{d\sigma}{dp}\,\langle m{C}
angle(p) \end{aligned}$$

⊳ if this effect is ignored :

 $rac{d^2\sigma/dp_1dp_2}{\left(d ilde{\sigma}/dp_1
ight)\left(d ilde{\sigma}/dp_2
ight)} < C$

► SOLUTION :

> assign to each neutron a weight in the mixing given by :

 $w(p_i)=1/\langle C
angle(p_i)$

 $\triangleright C$ is needed in order to build $C \dots$

how does it work ?

 \triangleright recover input C_{nn} of unknown shape !!!

F.M. Marqués (4)

unbound nuclei

- how to look for them ?
 strip nucleons from a beam !
- how to find them ?
 look for energy levels ...

• Ψ_{2n} modified by relative distance :

[Lednicky & Lyuboshits, SJNP 35 (1982) 770]

results on Pb and C targets

• Ψ_{2n} modified by relative distance :

[Lednicky & Lyuboshits, SJNP 35 (1982) 770]

▶ Pb target [FMM et al, PLB 476 (2000) 219] :

results on Pb and C targets

• Ψ_{2n} modified by relative distance :

[Lednicky & Lyuboshits, SJNP 35 (1982) 770]

▶ Pb target [FMM et al, PLB 476 (2000) 219] :

\triangleright C target ...

F.M. Marqués (5)

results on Pb and C targets

• Ψ_{2n} modified by relative distance :

\triangleright what is the effect of V_{cn} ?

[Lednicky & Lyuboshits, SJNP 35 (1982) 770]

▶ Pb target [FMM et al, PLB 476 (2000) 219] :

\triangleright C target ...

- ▶ ¹⁴Be [FMM et al, PRC 64 (2001) 061301] :
 - \triangleright decay \rightarrow ¹²Be+nn
 - ▷ Dalitz plots (core-n vs n-n) :

- ▶ ¹⁴Be [FMM et al, PRC 64 (2001) 061301] :
 - \triangleright decay \rightarrow ¹²Be+nn
 - ▷ Dalitz plots (core-n vs n-n) :

 $[\]rightsquigarrow \boldsymbol{r_{nn}}[C] > r_{nn}[Pb]$???

- ▶ ¹⁴Be [FMM et al, PRC 64 (2001) 061301] :
 - \triangleright decay \rightarrow ¹²Be+nn
 - ▷ Dalitz plots (core-n vs n-n) :

 $\rightsquigarrow \boldsymbol{r_{nn}}[C] > r_{nn}[Pb]$???

► core-n resonances :

- ▶ ¹⁴Be [FMM et al, PRC 64 (2001) 061301] :
 - \triangleright decay \rightarrow ¹²Be+nn
 - ▷ Dalitz plots (core-n vs n-n) :

 $[\]rightsquigarrow \boldsymbol{r_{nn}}[\mathsf{C}] > \boldsymbol{r_{nn}}[\mathsf{Pb}] ???$

► core-n resonances :

F.M. Marqués (7)

neutron clusters : a huge gap

neutron clusters : a huge gap

▶ neutron-rich beams : $N \gtrsim 2$?

► known masses & asymmetry :

► known masses & asymmetry :

► known masses & asymmetry :

the landscape in 2001

► known masses & asymmetry :

► few fermions bound ?

1960s-2000s : a long, unsuccessful quest

- **two-step** reactions :
 - $arpropto p + W \xrightarrow{(Al)}{\longrightarrow} {}^{A}n + {}^{70}Zn \rightarrow {}^{72}Zn [(t, p)]$ $arpropto {}^{208}Pb (\pi^-, \pi^+) {}^{4}n \xrightarrow{({}^{208}Pb)} {}^{212}Pb + \gamma$
- ▶ pion charge exchange :
 - $arappi^{3}$ H (π^{-},γ) 3n $arappi^{\{3,4\}}$ He (π^{-},π^{+}) $\{3,4\}n$
- multinucleon transfer :
 - $arpropertimes {}^{7}\mathrm{Li} + {}^{11}\mathrm{B}
 ightarrow {}^{14}\mathrm{O} + 4n$ $arpropertimes {}^{7}\mathrm{Li} + {}^{7}\mathrm{Li}
 ightarrow {}^{\{10,11\}}\mathrm{C} + \{4,3\}n$

 \rightsquigarrow bcks + cross-sections ...

the principle ...

 $|^{14}\text{Be}\rangle \equiv a |^{10}\text{Be} + \frac{4}{n}\rangle + \cdots$

▷ effective + clean

the principle ...

- ▷ effective + clean + sensitive !!!
- \triangleright saturation (sensitive to low E_p) ...

... and the results

... and the results

► other beam particles :

▶ estimated pileup [*xn*] :

channel	N_{2n}^{exp}	$N_{2n}^{\left(12 ight) }$	$N_{2n}^{(\mathrm{sim})}$	$N_{2n}^{(nn)}$
$(^{11}\text{Li}, X)$	4	<6.0	~3.3	<7.0
$({}^{15}B,X)$	0	<0.5	~ 0.3	<0.9
$(^{14}Be, ^{12}Be)$	0	—	0.8	<1.2
$({}^{14}\text{Be}, {}^{10}\text{Be})$	6	<0.5	0.2	<0.8

[FMM et al, PRC 65 (2002) 044006]

trigger of experiments and calculations

¹⁴Be
$$\xrightarrow{(C)}$$
 ¹⁰Be + ⁴n ('01,'02)
⁸He $\xrightarrow{(C)}$ ⁴He + ⁴n ('02)
^{12/14}Be $\xrightarrow{(C)}$ **2** α + ^{4/6}n ('02)
⁸He $\xrightarrow{(d)}$ ⁴He + d [+⁴n] ('04)

F.M. Marqués (13) $\mathbf{F}_{\mathbf{A}}^{\mathbf{C}}$

trigger of experiments and calculations

¹⁴Be
$$\xrightarrow{(C)}$$
 ¹⁰Be + ⁴n ('01,'02)
⁸He $\xrightarrow{(C)}$ ⁴He + ⁴n ('02)
^{12/14}Be $\xrightarrow{(C)}$ $2\alpha + \frac{4/6}{n}$ ('02)
⁸He $\xrightarrow{(d)}$ ⁴He + d [+⁴n] ('04)

► transfer [Beaumel] :

⁸He $\xrightarrow{(d)}$ ⁶Li [+⁴n] ('02,'04)

- "modern" calculations :
 - ▷ bound/resonance ? [Pieper,Carbonell]
 - \triangleright (⁴n, *p*) scattering [Bertulani]

about the ⁴n candidate events

 $arpropto \sigma_{breakup} \sim \sigma_{np} \sim 1 ext{ b} \dots$ $arprop P_n = 0.4 \Rightarrow \ P_{2,3,4n} = 0.52 ext{ !}$

• P_{xn} due to ⁴n resonance :

 $ightarrow P_{xn} imes 10 !$ ightarrow 4-n phase space : lower limit ...

new results : Bouchat, PRELIMINARY

¹⁴Be
$$\xrightarrow{(C)}$$
 ¹⁰Be + ⁴n ('01,'02)
⁸He $\xrightarrow{(C)}$ ⁴He + ⁴n ('02)
^{12/14}Be $\xrightarrow{(C)}$ **2** α + ^{4/6}n ('02)
⁸He $\xrightarrow{(d)}$ ⁴He + d [+⁴n] ('04)

F.M. Marqués (15) $\mathbf{F}_{\mathbf{A}}^{\mathbf{C}}$

new results : Bouchat, PRELIMINARY

¹⁴Be
$$\xrightarrow{(C)}$$
 ¹⁰Be + ⁴n ('01,'02)
⁸He $\xrightarrow{(C)}$ ⁴He + ⁴n ('02)
^{12/14}Be $\xrightarrow{(C)}$ $2\alpha + \frac{4/6}{n}$ ('02)
⁸He $\xrightarrow{(d)}$ ⁴He + d [+⁴n] ('04)

F.M. Marqués (16) $\mathbf{F}_{\mathbf{N}}^{\mathbf{C}}$

HALO 06 [Trento, Nov. 1] : "Probing correlations in A-n systems"

F.M. Marqués (16) $\mathbf{F}_{\mathbf{A}}^{\mathbf{C}}$

F.M. Marqués (17) $\mathbf{F}_{\mathbf{A}}^{\mathbf{C}}$

- ▶ ⁸He from SPIRAL :
 - ⊳ clean ⁴He identification
 - ightarrow 14 events ! $(E_p/E_n > 1.4)$
 - ⊳ no saturation !
 - → angular correlations
 - → sensitive to "any" state ???

PRELIMINARY conclusions & outlook

- ▶ ⁸He from SPIRAL :
 - ▷ clean ⁴He identification
 - ightarrow 14 events ! $(E_p/E_n > 1.4)$
 - \triangleright no saturation !
 - \rightsquigarrow angular correlations
 - → sensitive to "any" state ???

- ► DEMON @ GANIL ('05,'06) :
 - ¹⁵B $\xrightarrow{(C)}$ ¹⁴Be^{*} \rightarrow ^{10/8}Be + ^{4/6}n
 - → higher statistics !
 - → analysis in progress ...

- $ightarrow {}^{17}{
 m B}: \, Q_{eta 4n} = 9 \, \, {
 m MeV}$
- $ightarrow {}^{19}{
 m B}:\, Q_{eta 4/6n}\sim 17/8\,\,{
 m MeV}$ $S_{4n}\sim 2\,\,{
 m MeV}$!!!

$$ightarrow {}^8 ext{He}:\,S_{lpha\,[+4n]}=3.1\,\, ext{MeV}$$
 $S_{lpha\,[+4n]}<3.1\,???$

alpha knock-out ... (?)

HALO 06 [Trento, Nov. 1] : "Probing correlations in A-n systems"

F.M. Marqués (19)

▶ light output saturation :

pulse-shape discrimination :

► low-energy background :

 \triangleright low (& flat) rate !

► bck evts : $({}^{14}\text{Be}, {}^{12}\text{Be} + n)$ $[{}^{2}n]$ \triangleright lower limit on E_n [11–18]

interpret the correlation factor

$$egin{aligned} t &= 0 \ W(x_i) &= e^{-r_i^2/2r_0^2} \ W(x) &= e^{-r^2/4r_0^2} \end{aligned}
ightarrow egin{aligned} \star & C(q) &pprox \ 1 - rac{1}{2}\exp(-q^2r_0^2) \ + rac{|f|^2}{4r_0^2}\left(1 - rac{d_0}{2\sqrt{\pi}r_0}
ight) + rac{\Re f}{\sqrt{\pi}r_0}F_1(qr_0) - rac{\Im f}{2r_0}F_2(qr_0) \end{aligned}$$

* R. Lednicky and V.L. Lyuboshits, Sov. J. Nucl. Phys. 35 (1982) 770

HALO 06 [Trento, Nov. 1] : "Probing correlations in A-n systems"

F.M. Marqués (21)

how to iterate

▶ calculate $\langle C \rangle$ for each neutron :

$$egin{aligned} \langle C
angle(p) &= \int C(p,k) \, rac{d\sigma}{dk} \, dk \ &= \int C(p,k) \, rac{d ilde{\sigma}/dk}{\langle C
angle(k)} \, dk \end{aligned}$$

▷ subtle, but essential detail !

▶ in practice : *N* neutrons measured ...

$$\langle C
angle^{(n)}(p_i) = rac{1}{N-1} \sum_{\substack{j=1 \ j
eq i}}^N rac{C^{(n-1)}(p_i,p_j)}{\langle C
angle^{(n)}(p_j)}$$

Dert no need to normalize ! $Dert C^{(n-1)}(p_i, p_j) \approx C^{(n-1)}(|\vec{p_i} - \vec{p_j}|) \dots$ Dert interpolate around q_{ij} !

▷ effect easily simulated !!!

 \triangleright what is the effect of V_{cn} ?

multiple correlations in particle physics : Dalitz plots

▷ define "normalized" masses :

$$m{m_{ij}^2} = rac{M_{ij}^2 - (m_i + m_j)^2}{(m_i + m_j + m{E_d})^2 - (m_i + m_j)^2}$$

F.M. Marqués (23)

MUST setup : "hyperheavy" hydrogen ?

F.M. Marqués (24)

