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Tools:
mean-fields and moments

3 approaches to nuclear level density:

modified Fermi gas
Monte Carlo shell model
spectral distribution methods

\

mean-field (centroids or first moments)

residual interaction (spreading widths or second moments)

collective interaction (third moments)
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Computational
N(cCtear Structdtre

Fermi Gas Models

Single-particle energies from Hartree-Fock mean-field: €.P-"

Single-particle density of states: g (5 ) — Z 5 (5 — & i )

Partition function: INZ (05: ,B) — Z ln(l + 6Xp(0[ - /Bgi ))

Then apply saddle-point method...

Please keep in mind the Y
following is deliberately crude
and unsophisticated and is
meant as motivation, not
criticism of this approach/
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Computational
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Mean-field Level densities

First, start with “exact” level density from shell-model diagonalization

and add in model of level density from mean-field calculation
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Mean-field Level densities

Computational
N(cCtear Structdtre

I | These are both
28 | spherical nuclei...
hat about
T W

o 774 | deformed nuclides?
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Mean-field Level densities
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Mean-field Level densities

spherical mean-field
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Computational
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Mean-field Level densities

Difference is due to fragmentation of
Hartree-Fock single-particle energies
in deformed mean-field

Od3/2 >

Is; )

This in turn is a
manifestation of the
residual interaction

Fermi surface Fermi surface

Od5/2 >

spherical deformed
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Computational
N(cCtear Structdtre

Introduction to
Statistical Spectroscopy

(also known as ““spectral distribution theory™)

Pioneered by J. Bruce French 1960°s-1980’s

other luminaries include: J. P. Draayer, J. Ginocchio, S. Grimes, V. Kota,
S.S.M. Wong, A.P. Zuker + many others...

Problem: diagonalization is too hard and gives too much detailed information

Solution: instead of diagonalizing H, find moments: tr H"

Key question: how many moments do we need?

Rather than many moments (over the entire space) tr H», n=1,2,3,4,5,6,7...
compute low moments (n = 1,2,3,4) on subspaces
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How we do it:
a detailed version

The important configuration moments
Dimension da — TrPa

Centroid: E_=--TrP H Width: O, = iTrPa (H ~E )2

Higher central f4_ (0[) — tTrPa (H —E )n

(04
moments

Scaled moments M (CZ) = U, (05) /(O-a )n

Asymmetry (or skewness): M5(a.)
Excess ; m4(a) -3 =0 for Gaussian
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Introduction to
Statistical Spectroscopy

Primer on moments Interpretation of moments:

centroid centroid = spherical HF energy
0.6 : : |

width = avg spreading width
of residual interaction

05— —

- asymmetric
04

asymmetry = measure of collectivity

03—

0.1
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Computational

Introduction to
Statistical Spectroscopy

Then we consider the Ne
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Computational

Level densities as a sum of
configuration densities

We model the level density as a sum of partial (configuration) densities,
cach of which are modeled as Gaussians
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Computational

Level densities as a sum of
configuration densities

= 2 What can we do to
o[ { i ?

0°E - improve our model*
10" E Go to third moments: asymmetries
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Not satisfactory!

0.1 =
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Computational

Shell-Model
Configuration moments

The configuration asvmmetrv varies almost linearly with the centroid

2 3 i

% %s

: *%a T
oF 3 ‘: #.“‘ -

1+ I A g -

1
(5]
[

| | |
fﬂ,g(qj -180 -170 -160 -150 -140

L = |
*ee
ok ‘H" ”
1+ n‘.': -
. "

il 8

2 .,

_3 | | | | | | |
-40) 35 30 -25 20 15 10

E_[Mev]

einnu s wuwwel 2007 15



Computatlonal

Shell-Model
Configuration moments

The configuration asvmmetrv varies almost linearly with the centroid
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‘e ® UsD We can make all the centroids =0
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o-° % “’@ cﬁﬁ 3e ﬁ% ®g o, | of the interaction =0

(this is called a “traceless™ interaction in
the vocabulary of statistical spectroscopy)
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The monopole potential is related
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®* SXPF]
1 b * T GXPF] tracetess|
.y
0 Q?' o0y 0% 00 7 Deviations from this trend are
o0 gmMc} %C? o . . ..
- © NN A4 . associated with strong collectivity
* "
il o%
¥ l‘.
_3 ] ] ] ] ] ] ]
A0 35 80 35 S G185 -0
E_[Mev]

einnu s wuwwel 2007 16



Computational
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Computational

Level densities as a sum of
configuration densities

It is (often) important to include much better than
3rd and 4 moments using only second moments
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collective states difficult to get “starting energy” also difficult to control
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P(E)

Computational

Comparison with experiments
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Computational

Obligatory Summary

View nuclear many-body Hamiltonian through lens
of moment methods:

15t (configuration) moments = mean-field

2nd moments = spreading widths of residual interaction

3rd moments = collectivity of residual interaction
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