Is (d,pγ) a surrogate for neutron capture?

Robert Hatarik Rutgers University

CNR*2007, October 22-26, 2007

Motivation

- (n,γ) cross sections on unstable nuclei are important
 - Nuclear Astrophysics
 - Stockpile stewardship science
- Limitations for direct measurements
 - Need a radioactive target
 - $t_{1/2}$ must be a couple of hundred days or greater

$(d,p\gamma)$ as a surrogate

The $(d,p\gamma)$ reaction:

- can be used to populate the same compound nucleus as (n,γ)
- In opposite to (n,γ) it can be measured in inverse kinematics with radioactive beams
- To test the feasibility of a (d,pγ) surrogate a benchmarking experiment is needed:
- Using the surrogate ratio method
- Direct kinematics, stable targets with known cross sections
- The goal is to reproduce the cross section ratio of 171 Yb(n, γ) and 173 Yb(n, γ) (both have been measured directly)

Experimental Setup

Target chamber surrounded by 6 Ge-Clover detectors to detect γ -rays

Si detector array in the chamber detects reaction protons.

STARS detector arrangement

Front side divided into rings

Back side divided into sectors

- Targets: two isotopically enriched metallic foils of ¹⁷¹Yb (0.981 mg/cm²) and ¹⁷³Yb (0.502 mg/cm²)
- Beam: 18.5 MeV deuterons of the 88" Cyclotron at LBNL
- 3 Si detectors for particle detection (STARS)
 - dE: 500 μm with 48 rings 16 sectors
 - E1: 1000 µm with 24 rings and 8 sectors
 - E2: 1000 μm with 16 rings and 16 sectors
 - Angular range covered: 44° to 73°
- 6 Ge clover detectors to detect coincident γ -rays (LIBERACE)

STARS properties

• Using the ring hit-pattern in both dE and E detector the particle can be raytraced to the target. Elastic deuteron peak:

- Used to check energy calibration
- Shows resolution of array

Particle ID

MeV

- The left figure shows particle identification using dE vs E of event
- One can gate on protons using a polygon cut

γ-ray spectrum

Count rate comparison

• Count rates obtained by gating on 4+ to 2+ transition

• higher energy is problematic for Yb isotopes, since levels of target isotope are overlapping with 4+ level of interest Neutron capture cross sections for ¹⁷¹Yb and ¹⁷³Yb

from K. Wisshak et al, Phys Rev C 61, (2000) 065801.

Preliminary cross section ratio results

Summary

- A (d,py) measurement in inverse kinematics is a potential candidate for a surrogate to determine neutron capture cross sections on radioactive nuclei.
- A ratio experiment reduces systematic uncertainties by a large factor.
- To test the feasibility of such an attempt a surrogate experiment in direct kinematics on the stable isotopes ^{171,173}Yb has been performed.
- Preliminary results show a discrepancy of about 35-15% to (n,γ) data, depending on the transition gated.
- Biggest problem is spin mismatch: both target had different ground state spin and (d,p) transfers more angular momentum than (n,γ)

Collaborators

Rutgers University

J. A. Cizewski, S. D. Pain, T. Swan, P. D. O'Malley

Lawrence Livermore National Laboratory

L. A. Bernstein, J. T. Burke, S. R. Lesher, J. E. Escher

Lawrence Berkeley National Laboratory

J. Gibelin, L. W. Phair

Oak Ridge National Laboratory

D. W. Bardayan, J. C. Blackmon

Oak Ridge Associated Universities A. Kronenberg

Tennessee Technological University R. L. Kozub